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Abstract— Sim2Real transfer, particularly for manipulation
policies relying on RGB images, remains a critical challenge in
robotics due to the significant domain shift between synthetic
and real-world visual data. In this paper, we propose SplatSim,
a novel framework that leverages Gaussian Splatting as the pri-
mary rendering primitive to reduce the Sim2Real gap for RGB-
based manipulation policies. By replacing traditional mesh
representations with Gaussian Splats in simulators, SplatSim
produces highly photorealistic synthetic data while maintaining
the scalability and cost-efficiency of simulation. We demonstrate
the effectiveness of our framework by training manipulation
policies within SplatSim and deploying them in the real world
in a zero-shot manner, achieving an average success rate of
86.25%, compared to 97.5% for policies trained on real-world
data.

I. INTRODUCTION

The Sim2Real problem, a focal challenge in robotics, per-
tains to the transfer of control policies learned in simulated
environments to real world settings. Recently, significant
progress has been made in deploying controllers trained in
simulation to the real world in a zero-shot manner. Robots
have demonstrated the ability to walk on rough terrains [1],
[2], perform in-hand object rotation [3], [4], [5], [6], and
grasp previously unseen objects [7]. Notably, all of these
methods rely on perception modalities like depth, tactile
sensing, or point cloud inputs, which have gained significant
attention due to the relatively small Sim2Real gap they offer.
The reduced discrepancy between simulated and real-world
data in these modalities has led to remarkable progress,
reinforcing the idea that modalities that can be simulated
well, can be transferred well.

In contrast, RGB images are rarely used as the primary
sensing modality in robot learning applications. RGB images
offer several unique advantages over other commonly used
modalities in Sim2Real transfer. They capture crucial visual
details such as color, texture, lighting, and surface reflectivity,
to name a few, which are essential for understanding complex
environments. For instance, in a simple task of plucking ripe
fruits, color is a key feature for determining ripeness—an
inference straightforward in RGB space but difficult and
impractical with depth or tactile inputs. Additionally, RGB
images are easy to acquire in real-world environments with
cameras and align closely with human perception, making
them well-suited for interpreting intricate details in dynamic
and complex scenes.

But why has it been difficult to deploy policies trained
in simulation with RGB information to the real world? The

1 All authors are with the Carnegie Mellon University, USA.
Website and code available at https://splatsim.github.io

Fig. 1: We employ Gaussian Splatting [8] as the primary render-
ing primitive within existing simulation environments to generate
highly photorealistic synthetic data for robotic manipulation tasks.
Our framework retains all the traditional advantages of simula-
tors—including scalability, cost-efficiency, and safety—while en-
hancing visual realism. Policies trained exclusively on this synthetic
data exhibit zero-shot transfer capabilities to real-world scenarios,
achieving performance comparable to those trained on real-world
datasets.

problem lies in the fact that the distribution of images the
robot observes in the simulator is very different from the
distribution of images it would see in the real world. This
makes “vision Sim2Real an out-of-domain generalization
problem” [9], a fundamental challenge in machine learning
that is still unsolved. For this reason, policies trained on
simulated images often struggle when applied to distributions
of real-world images.

In this paper, we propose a systematic and novel method
to reduce the Sim2Real gap for RGB images, by leveraging
Gaussian Splatting [8] as a photorealistic render, using
existing simulators as the physics backbone. We propose
utilizing Gaussian Splatting [8] as the primary rendering
primitive, replacing traditional mesh-based representations
in existing simulators, to significantly improve the photo-
realism of rendered scenes. By integrating these renderings
of simulated demonstrations with state-of-the-art behavior
cloning techniques, we introduce a framework for zero-
shot transfer of manipulation policies trained entirely on
simulation data, to the real world. Our key contributions are
as follows:

• We propose a novel and scalable data generation frame-
work, “SplatSim” for manipulation tasks. SplatSim is
focused predominantly on bridging the vision Sim2Real
gap by leveraging photorealistic renderings generated
through Gaussian Splatting, replacing traditional mesh
representation in the rendering pipeline of the simulator.

https://splatsim.github.io


• We show how to leverage Robot Splat Models and
Object Splat Models, along with the simulator as a
physics backend, to generate photorealistic trajectories
of robot-object interactions. Our method eliminates the
need for the real-world data collection to learn these
interactions, and relies solely on an initial video of
the static scene with the robot. We further demonstrate
how these renderings, when combined with simulated
demonstrations, can be utilized to generate high-quality
synthetic datasets for behavior cloning methods.

• We demonstrate the effectiveness of our framework by
deploying RGB policies, trained entirely in simulation,
to the real world in a zero-shot manner across four tasks,
achieving an average success rate of 86.25%, compared
to 97.5% for policies trained on the real-world data.

II. RELATED WORKS

A. Sim2real

Robotics simulation tools like [10], [11], [12], [13], [14],
[15] have become invaluable in scaling up robot learning
due to several advantages including parallelization, cost and
time efficiency, and safety. Recent advancements in trans-
ferring learned policies from simulation to the real world
have demonstrated impressive results, particularly in domains
that leverage modalities with a low Sim2Real gap, such
as depth, point cloud, proprioception, or tactile feedback.
These modalities have enabled robots to perform contact-rich
tasks like quadruped locomotion [1], [16], [2], [17], [18] and
bipedal locomotion [19], [20], dexterous manipulation [3],
[4], [5], [6], [7], manipulation of articulated objects [21],
[22], among others [23], [24], [25], [26].

However, Sim2Real transfer for RGB-based manipulation
policies remains challenging. Previous attempts in this do-
main have primarily focused on tasks like navigation [27],
where high-fidelity collision meshes from scans [28], [29]
can enhance visual realism but fail to capture dynamic
interactions with the environment. Furthermore, existing ap-
proaches such as domain adaptation [30], often rely on exten-
sive offline data collection of real-world object interactions.

In this work, we address the challenge of transferring
RGB-based policies for manipulation tasks, which require
rendering complex interactions between objects and the
robot. Our method requires only an initial video of the static
scene without the need for additional real-world data collec-
tion. A work notably related to ours is RialTo [31] which
uses a Real2Sim2Real approach similar to ours. However,
their policy is still trained on point clouds, which requires
depth during execution time. In contrast, SplatSim only uses
RGB images for learning and policy deployment. Another
recent work Maniwhere [32] does large-scale reinforcement
learning in simulation and shows generalization to the real
world, however, their method still requires depth at test time
and cannot work with just RGB images in the real world.

B. Gaussian Splatting for Robotics

Gaussian Splatting [8] is a state-of-the-art rendering tech-
nique that models scenes using 3D Gaussian primitives,

offering an efficient and photorealistic representation of
complex geometries. In contrast to NeRF [33] and its deriva-
tives [34], [35], [36], the explicit, point cloud-like structure of
Gaussian Splats enables easier manipulation, which has led
to numerous subsequent works focused on dynamic Gaussian
Splatting models [37], [38], [39], [40], [41]. This explicit
nature of Gaussian Splatting has also garnered interest in
the robotics community, with recent studies applying it to
language-guided manipulation [42], object grasping [43],
and deformable object manipulation [44]. The two related
works, Embodied Gaussians [45] and RoboStudio [46], focus
on learning from real-world data. Embodied Gaussians [45]
directly learns a forward model for robot-object interactions,
requiring real-world data for each new robot and object,
while we offload dynamics to a physics engine and focus on
RGB-based policy deployment. RoboStudio [46] combines
simulation with Gaussian Splatting but focuses on system
identification, whereas our approach generates synthetic data
for real-world deployment using existing simulators. Another
closely related work to our method is [47], which combines
Gaussian Splatting with a simulator, but it is focused on navi-
gation. Unlike manipulation tasks, the agent in their approach
does not interact with or manipulate the environment.

III. PRELIMINARY

A. Rigid Body Transformations in Gaussian Splatting

In Gaussian Splatting, segmented objects within a scene
can undergo rigid body transformations, such as translation
and rotation, while still maintaining high-quality renderings.
Each object, represented by a set of 3D Gaussians, can
be transformed using a homogeneous transformation matrix
T , defined by the rotation R and translation t. For a 3D
Gaussian with mean position µ and covariance matrix Σ,
the transformed position µ′ and covariance Σ′ under the rigid
transformation are given by:

µ′ = Rµ+ t (1)
Σ′ = RΣRT (2)

Applying these transformations updates the position and
orientation of the 3D Gaussians of the object while preserv-
ing the corresponding geometric properties. Despite making
these changes in the object’s configuration, the Gaussian
representation enables smooth and accurate renderings.

IV. METHOD

The key premise of our method is that if each rigid
body in the Gaussian Splat representation of the real-world
scene can be accurately segmented, and its corresponding
homogeneous transformation relative to the simulator is
identified, then it becomes feasible to render the rigid body
in novel poses. The rigid bodies can include links of the
robot, links of the gripper, articulated objects, or simple non-
deformable objects. By applying this process to all rigid
bodies interacting with the robot in simulation, we can
generate photorealistic renderings for an entire demonstration
trajectory. This approach is analogous to traditional rendering
in simulators; however, instead of using mesh primitives, we



Fig. 2: Top: Our proposed SplatSim framework. Expert demonstrations are collected (a) in a physics simulator (PyBullet). In our case, these
demonstrations come either from human experts (teleoperation via Gello [48]) or through a privileged information-based motion planner.
The trajectories from the simulator are then fed to the simulator-aligned splat models of the scene and the object (b). We transform the
3D Gaussians to manipulate the static Gaussian Splat models, as delineated in Sec. IV-C, to extract photorealistic renderings of the scene
at novel joint and object poses, which serve as the RGB state observations for the diffusion policy. Along with these RGB observations,
diffusion policy [49] also takes the end effector position and orientation as the input. We augment the end effector states as well. Bottom:
Once trained with the sim data, we freeze the policy and directly deploy it to the real-world setting.

utilize Gaussian Splats as the underlying representation. This
approach allows us to be more effective at capturing the
detailed visual fidelity of real-world scenes.

The following subsections describe our method. We begin
by formalizing the problem statement in Sec. IV-A and
notations in Sec. IV-B. Next, we detail the segmentation and
rendering of each robot link at novel joint poses in Sec. IV-C,
individual objects at new positions in Sec. IV-D, and grippers
in Sec. IV-E. Sec. IV-F covers the rendering of complete
robot-object interaction trajectories, followed by the policy
training protocol in Sec. IV-G.

A. Problem Statement

We define Sreal as the Gaussian Splat of a real-world
scene, captured from multiple RGB viewpoints, including
the robot. We also define Sk

obj as the splat of the k-th object
in the scene, captured from multiple viewpoints. Our goal
is to use Sreal for generating photorealistic renderings Isim

of a robot operating in any simulator (e.g., PyBullet). Then,
we can leverage this representation to collect demonstrations
using the expert E for training RGB-based policies.

The expert E generates a trajectory τE consisting of state-
action pairs {(s1, a1), . . . , (sT , aT )} for a full episode. The
state at each time step t is defined as st = (qt, x

1
t , . . . , x

n
t ),

where qt ∈ Rm denotes the robot’s joint angles and xk
t =

(pkt , R
k
t ) represents the position pkt ∈ R3 and orientation

Rk
t ∈ SO(3) of the k-th object in the scene. The corre-

sponding action at = (pet , R
e
t ) refers to the end effector’s

position pet ∈ R3 and orientation Re
t ∈ SO(3).

The renderings Isim, derived from these simulated states
st, are used as inputs to train the policy πI . The policy relies
solely on real-world RGB images Ireal at test time.

B. Definitions of Coordinate Frames and Transformations
We define several coordinate frames to clarify the relation-

ships between the real-world scene, the simulator, and the
splat point clouds. The real-world coordinate frame, denoted
as Freal, serves as the primary reference frame. Both the
simulator coordinate frame, Fsim, and the real-world robot
frame, Frobot, are aligned with Freal. This alignment ensures
that the robot’s base in the simulator and the real world share
the same coordinate system.

Additionally, the splat coordinate frame, denoted as Fsplat,
represents the frame of the base of the robot in the Gaussian
Splat of the scene Sreal. The robot base in the splat point
cloud has a different frame from Freal, and we account for
this difference by using the transformation matrix T

Fsplat

Frobot
.

We also define the k-th object frame in the simulator,
Fk−obj,sim, where objects are initialized in SIM at the
origin with no rotation. The k-th object frame in the splat,
Fk−obj,splat, represents the object’s position and orientation
in its Gaussian splat Sobj . The object frames Fk−obj,sim and
Fk−obj,splat are later aligned during the simulation and splat
process using the transformation matrix T

Fk−obj,sim

Fk−obj,splat.

C. Robot Splat Models
Our method for obtaining robot renderings at novel joint

poses is summarized in Fig. 3. It follows a three-step
approach:
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Fig. 3: The robot is visualized in a static scene by first creating
a Gaussian splat of the scene with the robot in its home position.
The robot’s point cloud is manually segmented and aligned with
the canonical robot frame using the ICP algorithm. Each robot
link is then segmented, and forward kinematics transformations
are applied, enabling the rendering of the robot at arbitrary joint
configurations.

1) Alignment of Gaussian Splat Robot Frame to the
Simulator Frame: In order to combine the Gaussian Splat
representation Sreal with the simulator, we first manually
segment out the 3D Gaussians associated with the robot. The
means of these 3D Gaussians form a point cloud which is
aligned with the ground truth point cloud obtained from the
simulator. To achieve this, we use the Iterative Closest Point
(ICP) algorithm, which produces the desired transformation
T

Fsplat

Frobot
.

2) Segmentation of the Robot Links: To associate the 3D
Gaussians with their respective links in Sreal, we leverage
the ground truth bounding boxes of the robot’s links, pro-
vided by its CAD model. This method allows us to isolate
the 3D Gaussians corresponding to each link in the real-
world scene, denoted as Sl

real, where l refers to the l-th link
of the robot.

3) Forward Kinematics Transformation: Once we have
the 3D Gaussians for individual links and the frames aligned,
we can use the robot’s forward kinematics to get the robot
pose at arbitrary joint angles qt ∈ st, given by the simulator.
In this work, we use the forward kinematics routine from
PyBullet to get the Transformation T l

fk for link l in the
robot’s canonical frame Fsim. The transformation of the 3D
Gaussians can be calculated as :

T = (T
Fsplat

Frobot
)−1 · T l

fk · TFsplat

Frobot
(3)

where T
Fsplat

Frobot
is the transformation matrix to get the robot

from splat frame to the simulation frame. Once the transfor-
mation for each link is calculated, we use Eq. 1 and Eq. 2
to transform the 3D Gaussians related to individual links of
the robot. The robot at novel poses is then rendered by the
standard Gaussian Splatting rendering framework [8].

D. Object Splat Models

Similar to the robot rendering, we use ICP to align
each object’s 3D Gaussians Sk

obj to its simulated ground
truth point cloud. In this way, we get the transformation
T

Fk−obj,splat

Fk−obj,sim
, which transforms the splat in Sk

obj frame to
simulator frame. Given the position pkt ∈ st and orientation
Rk

t ∈ st can be used to calculate the transformation of object
T k−obj

fk from its original simulator frame Fk−obj,sim. Using

T k−obj
fk we can get the object’s 3D Gaussians in Sreal frame

with the transformation :

T = (T
Fsplat

Frobot
)−1 · T k−obj

fk · TFk−obj,splat

Fk−obj,sim
(4)

Once the transformation for the object is calculated, we
can again use Eq. 1 and Eq. 2 to transform the 3D Gaussians
related to the object. Then we use the Gaussian Splatting
rendering framework [8] to render the object at its new
position and orientation.

Fig. 4: We use a KNN-based classifier for segmenting links for
articulated objects like parallel jaw grippers. We train a KNN model
with the ground truth point labeling from the URDF model of the
end effector.
E. Articulated Object

While CAD axis-aligned bounding boxes allow straight-
forward segmentation of robot links, certain objects, such
as parallel jaw grippers, present challenges due to their
misalignment with standard axes, that is, the gripper links
are not neatly segmented out by just using bounding boxes
in the 3D space. To address this, we employ a ground truth
K-Nearest Neighbour (KNN) classifier trained on labeled
simulator point clouds as in Fig. 4 (a), which enables
inference of the link class for each 3D Gaussian in the
aligned splat as shown in Fig. 4 (b).

F. Rendering Simulated Trajectories using SplatSim
Now that we are able to render individual rigid bodies

in the scene, we can use this to represent any simulated
trajectory τE with photorealistic accuracy. We use these
state-based transformations along with methods described
in Sec. IV-C, IV-D to get the demonstration for our policy
to learn from τG = {(Isim1 , a1), (I

sim
2 , a2), . . . , (I

sim
T , aT )}.

This data is used by policy to predict actions from the
synthetically generated images.

G. Policy Training and Deployment
For learning from the generated demonstrations τG in the

simulator, we employ Diffusion Policy [49], [50], which is
the state of the art for behavior cloning. Although our method
significantly mitigates the vision Sim2Real gap, discrep-
ancies between the simulated and real-world environments
remain. For instance, simulated scenes lack shadows, and
rigid body assumptions can lead to improper rendering of
flexible components such as robot cables. To address these
issues, we incorporate image augmentations similar to [51]
during policy training, which includes adding gaussian noise,
random erasing and adjusting brightness and contrast of the
image. These augmentations notably enhance the robustness
of the policy and improve its performance during real-world
deployment.



Task
Successful Trials Human Effort to Collect Data
(Out of 40 Trials) (hours)

Sim2Sim Real2Real Sim2Real (SplatSim) Simulator Real World

T-Push 100% 100% 90% 3.0 3.5
Pick-Up-Apple 100% 100% 95% 0.0∗ 3.5

Orange-On-Plate 97.5% 95% 90% 0.0∗ 6.0
Assembly 85% 90% 70% 0.0∗ 7.5

Total 95.62% 97.5% 86.25% 3.0 20.5
∗ Automated process

TABLE I: Comparison of task success rates and data collection times across various manipulation tasks. Our policies trained solely on
synthetic data achieve an 86.25% zero-shot Sim2Real performance, comparable to those trained on real-world data. By leveraging the
automation capabilities of simulators, we significantly reduce the human effort required for data generation.

V. EXPERIMENTS

To evaluate the effectiveness of our framework in bridg-
ing the Sim2Real gap for RGB-based manipulation tasks,
we conducted extensive experiments across four real-world
manipulation tasks. We begin by detailing the data collection
process in both the simulator and real-world environments.
We then compare the performance of policies trained on
our synthetic data with Real2Real policies—those trained
on real-world data and deployed in real-world environ-
ments. This comparison demonstrates the high fidelity of
our synthetic data, showing that policies trained within our
framework can be deployed to real-world tasks without fine-
tuning. Additionally, we assess Sim2Sim performance by
training and evaluating policies entirely within the SplatSim,
allowing us to quantify the degradation in performance
during Sim2Real transfer. Lastly, we investigate the effects
of data augmentation on the transfer process and evaluate
the visual fidelity of the photorealistic renderings generated
by the SplatSim framework.

A. Demonstrations in the Real World and Simulation

In the real world, demonstrations for each task were
manually collected by a human expert. In contrast, the
simulator streamlines this process by employing privileged
information-based motion planners, which automatically
generate data using privileged information, such as the posi-
tion and orientation of each rigid body in the scene. The sim-
ulator not only reduces effort by automating resets between
demonstrations when a human expert is involved but more
importantly, it leverages motion planners that eliminate the
need for human intervention entirely. This enables the gener-
ation of large-scale, high-quality demonstration datasets with
minimal manual input. As a result, the simulator drastically
reduces the time and effort required for data collection. As
shown in Table I, while real-world demonstration collection
required about 20.5 hours, the same tasks were completed
in just 3 hours in the simulator, underscoring the efficiency
and scalability of our approach.

B. Zero-Shot Policy Deployment Results

We evaluate the zero-shot deployment of our policies
across four contact-rich real-world tasks, using task success
rate as the primary metric. As shown in Table I, our method

achieves an average success rate of 86.25% for zero-shot
Sim2Real transfer, compared to 97.5% for policies trained
directly on real-world data, highlighting the effectiveness
of our approach. All experiments were conducted using a
UR5 robot equipped with a Robotiq 2F-85 gripper and 2
Intel Realsense D455 cameras [52] with deployment on an
NVIDIA RTX 3080Ti GPU for the Diffusion Policy [49].

1) T-Push Task: The T-Push task, popularized by Diffu-
sion Policy [49], captures the dynamics of non-prehensile
manipulation, which involves controlling both object motion
and contact forces. For training, a human expert collected
160 demonstrations in simulation using the Gello teleoper-
ation [48]. While testing, the robot started from a random
location and achieved a 90% success rate (36/40 trials)
in zero-shot Sim2Real transfer as shown in Table I. This
result shows the effectiveness of our framework in handling
the dynamics of pushing without fine-tuning on real-world
demonstrations. Additionally, the performance of our method
is comparable to Real2Real (40/40) and Sim2Sim (40/40).

2) Pick-Up-Apple Task: The Pick-Up-Apple task involves
grasping and manipulating the full pose of an object (i.e.,
position and orientation) in 3D. This task was designed
to evaluate the robot’s grasping capabilities when trained
using our simulated renderings. A motion planner, leveraging
privileged state information from the simulator (accurate
position and orientation of each rigid body in the scene),
generated 400 demonstrations with randomized end-effector
positions and orientations. During real-world trials, our pol-
icy achieved a 95% success rate (38/40 trials) in zero-shot
Sim2Real transfer, as shown in Table I.

3) Orange on Plate Task: In this task the robot has to pick
up an orange and place it on a plate. In simulation, a motion
planner with access to privileged information, generated 400
demonstrations. The end-effector position and initial gripper
state were randomized during training. During testing, the
robot always started from a home position. We achieved
a 90% success rate (36/40 trials) in zero-shot Sim2Real
transfer.

4) Assembly Task: In this task the robot has to put a
cuboid block on top of another cuboid. The robot starts at the
home position with the green cube already grasped and has to
place it on top of the red cube. The task is particularly tough
since the robot has to make a precise placement otherwise the



Fig. 5: SplatSim Rollout: Renderings from our SplatSim framework across four different manipulation tasks.

cube will fall and will lead to a failure case. Our Sim2Real
policy achieved a performance of 70% (28/40 trials) on this
task, compared to 95% on Sim2Sim and 90% on Real2Real.

C. Quantifying Robot Renderings

We quantitatively evaluate the accuracy of rendered robot
images at various joint configurations by comparing them
with the real-world images. We assess the quality of the
robot’s renderings across 300 different robot joint angles. To
measure the similarity between the rendered and real-world
images, we employ two metrics commonly used in image
rendering assessment: Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM). Despite the
variations in joint configurations, the renderings achieve an
average PSNR of 22.62 and an SSIM of 0.7845, indicating
that the simulated images closely approximates the visual
quality of the real-world RGB observations.

D. Effect of Augmentations

To quantify the impact of data augmentations on the
Sim2Real performance of our policy, we conducted exper-
iments comparing policies trained with and without aug-
mentations. While the Diffusion-Policy performs effectively
without augmentations in consistent environments (e.g.,
Sim2Sim or Real2Real scenarios), transferring a policy
trained in simulation to the real world introduces domain
shifts that necessitate additional robustness as the renderings
can’t capture dynamic details like changing reflections and
shadows. We incorporated augmentations such as random

noise addition, Color Jitter, and random erasing during
training to address these shifts. These augmentations improve
the performance of the policy from 21% to 86.25% across
four tasks in Sec. V-B.

VI. CONCLUSION

In this work, we tackled the challenge of reducing the
Sim2Real gap for RGB-based manipulation policies by
leveraging Gaussian Splatting as a photorealistic rendering
technique, integrated with existing simulators for physics-
based interactions. Our framework enables zero-shot transfer
of RGB-based manipulation policies trained in simulation
to real-world environments. While our framework advances
the current state-of-the-art, it is still limited to rigid body
manipulation and cannot handle complex objects such as
cloth, liquids, or plants. In the future, our plan is to combine
our framework with reinforcement learning-based methods to
acquire more dynamic skills. We will also further improve
our system to train and deploy robots in highly complex and
contact-rich tasks in the real world. Specifically, agricultural
tasks such as pruning and harvesting, which require data that
is challenging to obtain under field conditions, could greatly
benefit from our proposed method.
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